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We compare the classical and quantum-mechanical motion of a distribution initially localized on
a classical second-order resonance of a driven pendulum. As the driving is increased the quantum
state becomes localized about the classically stable region of phase space. The existence of a parity
symmetry then allows for coherent tunneling between isolated second-order resonances. We compare
and contrast the classical and quantum behavior with the aid of perturbation theory.
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I. INTRODUCTION

The concept of a resonance is central to an understand-
ing of the dynamics of driven Hamiltonian systems. In
the study of classical chaos the complicated topology of
trajectories can be explained by the formation and in-
teraction of resonances at successively finer scales. In
particular, a resonance can lead to the emergence of a lo-
cally stable region of phase space which may persist even
after surrounding trajectories have become chaotic and a
distribution of points contained within such a region will
remain localized.

In this paper we are interested in the formation of
stable regions in quantum-mechanical phase space and
the motion of wave packets initially confined near such
regions. A lot of theoretical and numerical work has
been done by Berman and co-workers [1-3] and Lin and
Reichl [4] on quantum systems containing many energy
levels resonant with a periodic driving force. Under cer-
tain conditions these free-energy levels will be trapped.
That is, if the initial state of the perturbed system is an
energy eigenstate of the free system, with energy in the
resonance zone, the dynamics will not mix in free-energy
states beyond the resonance zone. This is analogous to
the trapping of classical trajectories by KAM surfaces.
Other researchers [5-7] have studied the rate of tunnel-
ing of quantum wave packets between resonances of a
bistable system. They have found that tunneling can
be enhanced or suppressed by periodic driving. In this
paper we will study the dynamic localization of a wave
packet initially situated on a classical second-order reso-
nance. For our numerical work we have chosen a nonlin-
ear pendulum perturbed by a periodic modulation of its
linearized frequency. This system is essentially different
from those used to study tunneling because the free dy-
namics has only one stable fixed point. Bistability arises
as a consequence of the modulation and the parity sym-
metry of the Hamiltonian.

In our system a freely evolving wave packet will quickly
become delocalized because of the nonlinear frequency of
the pendulum. We also observe revivals of the initial
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wave packet which can be explained in terms of the local
nonlinearity of the classical oscillator [8]. As the am-
plitude of the frequency modulation increases from zero
we find that both the classical phase-space distribution
and the quantum-mechanical wave packet become local-
ized about the classical second-order resonance. The dy-
namic phase-space localization of a classical distribution
can be explained by the increase in width of the clas-
sical resonance. We explain dynamic phase-space local-
ization in the quantized motion by showing that as the
perturbation is increased certain quasistationary states
have @ functions that become peaked about the sta-
ble classical fixed points. To explain the change in the
quantum-mechanical @ functions we generalize normal
time-independent quantum perturbation theory to in-
clude perturbations periodic in time. This is done by
introducing the notion of an extended Hilbert space, a
technique already used in quantum stability theory [9].
We show that resonances in second-order classical pertur-
bation theory imply near-resonant denominators at sec-
ond order in time-dependent quantum perturbation the-
ory. As a result perturbed quasistationary states rapidly
develop support on near-resonant free states, and it is the
interference between these states which causes the change
in topography of the Q function. Once the classical dis-
tribution has become localized we find that a further in-
crease in the perturbation strength causes the classical
region of stable motion to shrink and the distribution
to become delocalized. In the corresponding quantum-
mechanical evolution we find that the wave packet begins
to tunnel between resonances. We interpret this behav-
ior in terms of the presence of a parity symmetry and the
gradual detuning of the dominant quasifrequencies.

The layout of this paper is as follows. In Sec. II we
introduce the models to be discussed, both classical and
quantum mechanical. In Sec. III we describe the struc-
ture of classical phase space with the aid of classical
perturbation theory and introduce our generalization of
time-independent quantum perturbation theory. The re-
sults of numerical simulations and their interpretation
in terms of quantum perturbation theory are given in
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Sec. IV. A discussion of results and further topics of
research is presented in Sec. V.

II. THE DRIVEN PENDULUM

The states of a classical pendulum are represented by
an angle coordinate q restricted to the interval [—m, )
and an angular momentum p. The evolution of a pendu-
lum corresponds to the motion of ¢ and p in phase space.
The pendulum which we consider is

H(t) = — — k(1 — 2ecos Qt) cos q. (2.1)
When ¢ = 0 Eq. (2.1) reduces to the ordinary time-
independent nonlinear pendulum. This Hamiltonian has
a single stable fixed point at (g,p) = (0,0) and exhibits
bounded motion inside the cosine potential well and un-
bounded motion over the top of the cosine potential. The
frequency of the motion linearized about (g,p) = (0,0)
is equal to /k(1 — 2ecosQt) and so (2.1) corresponds
to a pendulum with a modulating linearized frequency.
Equation (2.1) also describes the center-of-mass motion
of a two-level atom in an electromagnetic standing wave
in the limit of large atom-field detuning [10]. For this
case ¢ would be the position of the atom and p its lin-
ear momentum. In this case the time-dependent coupling
could be produced by modulating the field frequency at
a frequency €.

For the case € = 0 the total energy F = 1’2—2 — Kcosq is
a constant of the motion and the classical mechanics is
exactly integrable. For nonzero € the coupling of the driv-
ing term with the integrable motion of the free nonlinear
pendulum leads to a modification of the invariant and in
the case of a classical resonance a change in the topology
of phase-space orbits. The overlap of resonances leads to
the formation of a layer of stochastic motion about the
classical separatrix. The resonances that do not overlap
persist as stable regions of phase space.

The classical stroboscopic dynamics of the variables ¢
and p are determined by the recursive formula

(¢'sp") = F((¢,p)) = (4(g,p,T),p(q,p,T)),

where T = 27 /Q is the period of the driving term and
the functions g(g,p,t) and p(q,p,t) are determined by
Hamilton’s equations

(2.2)

dg

prial 2 (2.3a)
Z—It) = —k(1 — 2ecos ) sin g, (2.3b)

and the initial conditions g(g,p,0) = q and p(q, p,0) = p.

The map F possesses the two important symmetries,
FP = PF,
FT =TF™ .

(2.4a)
(2.4b)

Here P: (g,p) — (—q, —p) denotes the parity transfor-
mation and T: (gq,p) — (g, —p) denotes the time-reversal

reflection about the g axis. Henceforth we fix kK = 1.2
and study the stroboscopic dynamics as € is increased. In
Fig. 1 we show the classical stroboscopic phase portraits
for € = 0.0,0.1,0.2, and 0.3. To generate these pictures
we have taken as initial conditions points lying along the
p axis and applied the map F 500 times. As a conse-
quence of the symmetries P and T the stroboscopic por-
traits remain unchanged by reflections about either axis.
When ¢ = 0.1 a layer of stochastic motion has already
formed about the separatrix. Elliptic fixed points are ev-
ident about the regions (gq,p) =~ (0,0), (g,p) =~ (0,+1.2),
and (q,p) = (0,%2.2). Note that the stable regions cen-
tered on (q,p) = (0, £1.2) increase in area as € increases
from 0.0 to 0.2 and begin to decrease when ¢ is increased
to 0.3.

When the mean height of the cosine potential x is of
the same order as the quantum energy spacing at the
bottom of the cosine well /K then quantum-mechanical
effects become significant. The Hamiltonian for the quan-
tum pendulum is generated from Eq. (2.1) by replacing
the real variables ¢ and p by Hermitian operators § and
P satisfying the commutation relation [§,p] = i¢h. The
Hamiltonian H(t) acts on the Hilbert space H of states
spanned by the p eigenstates |n) such that p|n) = An|n).
If § and p were the operators of position and linear mo-
mentum n would be any real number. For simplicity we
choose ¢ and p to be the operators of angle and angular
momentum. For this case n is an integer. The quantum
analog of the iterative map Eq. (2.2) is the evolution op-
erator

F=0U(T), (2.5)
where U(t) is the unitary evolution operator generated
by H(t) via the differential equation

LdU®) -
ih— > = H)U (t).

(2.6)

The orthonormal eigenstates of F' denoted by |w,,) for
m = 0,1,2,... which satisfy
Flwm) = exp(—iwmT)|wyy,) (2.7)

provide a convenient basis for studying the stroboscopic
evolution. An arbitrary state

[9) = ) [wm) (wem¥) (2.8)
evolves to
Frly) = exp(—inwnT) [wm ) (wm|1h) (2.9)

after n cycles of the driving term. The analogues of the
classical symmetries Eq. (2.4a) and Eq. (2.4b) are

FP =PF,
FT =TF,

(2.10a)
(2.10b)

where P is the linear parity operator with the following
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FIG. 1. Plot of classical stroboscopic phase-space portraits.

(a) e =0.0, (b) e =0.1, (c) e =0.2, (d) e =0.3.

action on momentum eigenstates:

Pln) = | —n). (2.11)

T is the antilinear time-reversal operator with the same
action as P on the momentum eigenstates. As P com-
mutes with ¥ and P? = 1 the states |w,,) are even or
odd parity under P,

Plwp) = £|wpm). (2.12)

Expanding |wy,) in terms of momentum eigenstates

oo

lwm) = D |n)(nlwm),

n=-—oo

(2.13)

it follows from Egs. (2.7) and (2.10b) and the antilinear-
ity of T that

FT|w,y) = exp(—iwmT)T|wpm)- (2.14)
Thus |wy,) and T|w,,) are degenerate. We may now form
a new basis of quasistationary states by symmetric and
antisymmetric combinations of degenerate pairs. In that
case as the parity condition implies (n|w,,) = £{(n|wm,)*
the expansion of the new quasistationary states in the
momentum basis may then be chosen real. This property
is useful in the numerical diagonalisation of F'.

III. PERTURBATION THEORY
A. Classical

A thorough discussion of classical perturbation theory
can be found in [11]. Here we present a summary of as
much of the formalism as will be required in subsequent
sections.

Denote the nonlinear pendulum (2.1) in the limit € = 0
by Hy. As noted in Sec. II the existence of a constant of
the motion ensures that the dynamics generated by the
Hamiltonian is integrable. By this we mean that there is
a canonical transformation from (g,p) to new conjugate
variables (I, 6) such that Hy is a function of I only and
the classical frequency of oscillation wci(I) is

dd dHo(I)
= _ o) 3.1
wa(l) = 3 I (3-1)
Consider the perturbation of the Hamiltonian,
Eq. (2.1), as a power series in ¢,
H(I1,0,t) = Ho(I) + eH1(I,0,1), (3.2)

where H; = 2k cos (Qt) sin (g). To determine if first-order
resonances occur we Fourier analyze the first-order (in €)
term, i.e., eHq(1,0,t),

H, = >

m=0, *1, £2,...

Hi amlexpi(Qt + 2mb) + c.c.]. (3.3)

Then first-order resonance solutions occur for I given by
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2mwq(I) =R =0, m =0, £1, +2,... (3.4)

To determine if second-order resonances occur we must
first find approximate action angle variables (I,8) for
H(1,0,t) up to and including the order-e¢ terms. Pro-
vided I is not close to a first-order resonance, we can do
this through a canonical transformation so that the new
Hamiltonian is

H(I,0,t) = Ho(I) + 2Hy(I1,0,t) + --- (3.5)
There are two things to note here. Firstly, there is no
order-e term. This is because H; is purely oscillatory. Up
to order € then the only qualitative changes introduced
by the perturbation are due to the first-order resonances.
Secondly, the canonical transformation has introduced
an €2 term into the new Hamiltonian, e2H,. It is the
Fourier analysis of this term that shows the second-order
resonance solutions. Here

Hy= >

m=0, +1, +2

Hj 2, [exp i(2Qt + 2mb) + c.c.]

+ (time-independent terms). (3.6)
So second-order resonances occur for I given by
mwa(l)—Q=0, m=0, +1, +2,... (3.7)

If I (or I) satisfies a resonance condition it is not an
approximate invariant as in an integrable system. In fact
it can be shown that a chain of stable and unstable or-
bits lie in its place. Further, there is a region around the
stable periodic orbits in which solutions lie on tori, or
invariant curves for the stroboscopic map. We can cal-
culate the width, perpendicular to the invariant I of this
region, as an estimate of the size of the resonance. For
first-order resonances the width is of order /€ and for sec-
ond order of order €. So for € small first-order resonances
are typically more important. However, for the system
we have here all the first-order resonances are clustered
near the separatrix. For ¢ = 0.1 they have overlapped
to form a chaotic band as seen in Fig. 1(b). But there
is one second-order resonance wq(I) = +Q at a signifi-
cantly smaller value of I which is important. The two
stable periodic points that replace the invariant appear
in Fig. 1(b) as fixed points of the stroboscopic map at
(¢,p) = (0.0 £1.2) and the width of the resonance is sur-
prisingly large =~ 0.44. The calculation of the positions
and widths of the resonances is given in the Appendix.

B. Quantum

In Sec. ITT A we saw how classical perturbation theory
could describe the structure of phase space for systems
perturbed slightly away from the integrable Hamiltonian
Hy. In this section we aim to develop the formalism
of quantum perturbation theory as a means of describing
quantum phase space for the quantized driven pendulum.

Some of the formalism described below has already ap-
peared in the context of quantum stability [9]. Dinaberg
and Sinai [12] and Craig [13] have developed an operator
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KAM theory in close analogy with the Lie-transformation
method as it applies to the classical KAM theorem. As
we shall see, the perturbation theory developed below is
analogous to the classical theory discussed in Sec. IITA.

We begin with the observation that in the limit of e = 0
the quantum stroboscopic map F' is simply

N —iH,T
F-exp(%),

where Hy is the quantized nonlinear pendulum. Denote
the stationary states of Hoy with energy Aw,, by |wm.),

(3.8)

then |w,,) is a quasistationary state for F with quasifre-
quency Wy, = Wgp,. In analogy with time-independent
quantum perturbation theory we assume that for small €
the perturbed quasistationary states |w,,) and quasifre-
quency w,, are close to |w,,) and w,,, respectively, and
then attempt to find corresponding asymptotic expan-
sions.

Let |w,,(t)) denote the state evolving from the initial
quasistationary state |w,,) under the time-dependent dy-
namics (2.6) generated by the Hamiltonian

H(t) = Ho + ¢H,(2). (3.9)
For the moment consider the general case where H;(t)
is any Hermitian operator periodic in time with funda-
mental frequency €. Then |w,,(t)) satisfies the time-
dependent Schrodinger equation

i (1)) = (1) (1), (3.10)
subject to the quasiperiodicity condition
(W (T)) = exp(=iwmT)]wm(0)). (3.11)
We introduce states |v,,) periodic in ¢
[vm) = exp(iwmt)|wm (t))- (3.12)
Then |v,,) satisfies the equation
i |vm) = —ih%h}m) + H(t)|vm)- (3.13)

In order to use the methods of time-independent per-
turbation theory we introduce the notion of an extended
Hilbert space as follows. Since |v,,) is periodic in ¢ it has
a Fourier expansion in terms of the momentum eigen-
states |n) and time,

oo

lom) = D exp(iQUt)vmin|n).

l,n=—oc0

(3.14)

We can think of the function exp(iQ2it) as an eigenstate
of the “momentum” operator

- d

h=—ih—

i

in the Hilbert space L3(0,T). Denote this state by |l).
Equation (3.14) is now thought of as an expansion of |v,,)

(3.15)
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in terms of the states |n,l) = |n) ® |I) and Eq. (3.13)
becomes an eigenvalue problem

Tt |m) = K|vm), (3.16)
where K is the Hermitian operator
K =h+H() (3.17)

acting on the extended Hilbert space K = H ® L2(0,T).

Once the eigenvalue problem Eq. (3.16) has been solved
we can recover the quasistationary state |w,,) by the pro-
jection

|wm) = (t = 0lvm), (3.18)

where

oo

> 1) exp(iQit).

l=—o0

It) = (3.19)

To solve the eigenvalue problem perturbatively we di-
agonalize the “free” operator

973

so that |wm, () has the eigenvalue A(w., + 12). Without a
loss of generality we look for eigenstates of K that reduce
to |wim, 0) in the limit as € vanishes. We assume that the
energy level Aw,, of K is nondegenerate and that |v,)
and w,, have the following asymptotic expansions:

W, = Wiy + ewP) + Ew® 4 O(e), (3.22a)
[om) = lwm, 0) + e[v3)) + €*[vl)) + O(e*).  (3.22b)

The new quasifrequency and quasistationary state are
then calculated using standard Rayleigh-Schrédinger per-
turbation theory [14]. Up to second-order the corrections
to the quasifrequencies are

hw(l) = (wm|flw}wm), (3.23a)
e
- Ho — RIQ

x(1 - 5,0Pm)f11, wm>, (3.23b)

and setting all arbitrary constants to zero before project-
ing onto H the corrections to the quasistationary state

Ko = h+ Ho. (3.20)  are
The eigenstates of Ko are just |wp,l) = |wm) ® |I) and it i’%@) = Aﬁ”“-’m)y (3.24a)
is not difficult to verify that mﬁ)) - Ag)wm)’ (3.24b)
Kolwm, 1) = A(wm + 192)|wm, 1), (3.21)  where
1
“ 1 ~ N
AN =N — (1 -610Pn)Hu, 3.25a
™ z,:hwm—Ho—hm( toFm) B (3.252)
. 1 .
AP = - 1—6xoPrn
™ Z:fhwm—Ho—th( woFm)
1 L R 1 L
x ( Awl) - 1—6poPr)Hu — S HI - 1— 6P )H _>. 3.25b
( mhwm—Ho—th( koFom) Hi z,: ”)‘uum—Ho—fi(k—l)Q( wbm)Hyet ). (3.250)

In the above equations P, = |wm){wm| denotes the
pro;ectlon onto |w,,) and Hj, is the Fourier component
of Hy rotating at frequency IQ. Equations (3.23a) to
(3.25b) are the natural generalization of perturbation
theory to the case of perturbations periodic in time. By
setting H, =0 for all I # 0 we recover the expressions of
normal time-independent perturbation theory [14]. Note
that the time-dependent components of H, (t) only be-
gin to contribute to the shift in quasifrequency at second
order. This is analogous to the result that to first order
in € the classical Hamiltonian H(I) only depends on the
cycle-averaged part of H(t) [11].

The matrix elements (W |fi$,11)|wm) and (wmllﬁg”wm)
become singular when the free-energy levels satisfy the
resonance condition

A(wm — wm) = B, (3.26)
where [ is an integer. We will call them first- or second-
order resonances, depending at which order the singu-

larity occurs. In the language of time-independent per-
turbation theory and extended Hilbert space a quantum
resonance indicates that the Hamiltonian K has degen-
erate energy levels. In this case we must use degener-
ate perturbation theory to find the new quasistationary
states.

There is an important difference between the classical
and quantum-mechanical perturbation theories outlined
above: Exact quantum resonances are less likely than
classical resonances because quantum frequencies are dis-
crete whilst classical frequencies form a continuum.

If the system is semiclassical, by which we mean that
the principal of quantized action gives a good approxima-
tion to the quantum energy levels of the free Hamiltonian
Hy, then for nearby energy levels the local classical fre-
quency is related to the energy difference by the equation
[15]

(3.27)

Wy — Wm—n = nwcl(Im)a

where I,,, is the semiclassical action. For each classical
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resonance nw — (2 = 0 there will be energy levels Aw,,
and Aw,,_, satisfying the near-resonance condition

A(wm — Wm—n) = AIQ. (3.28)

The perturbed quasistationary state |w,,) will rapidly
develop a significant component along |w,,—,) as € is in-
creased. In the work by Berman and co-workers [1-3,16]
and in our following analysis it is assumed that the free-
energy spacing is well approximated by a low-order ex-
pansion in the principal quantum number n. When this
is not the case we would expect there to be quantum
resonances that are not present in the classical model.
Now consider the special case (2.1) where Hy(t) =

2k cos(Qt) cos(§). For the classical second-order reso-
nance where n = [ = £2 there will be energy levels
satisfying

A(wm — wm2) = £250Q. (3.29)

We see from Eq. (3.25b) that these states give rise to
near-resonant denominators in the second-order of quan-
tum perturbation theory.

IV. RESULTS

In this section we present the results of numerical stud-
ies of the dynamics of the Hamiltonian Eq. (2.1) in both
its classical and quantized forms. We study the change
in the classical evolution of an ensemble of 1000 points
as the perturbation ¢ is increased from 0.0 to 0.3. The
points are initially centered near the second-order reso-
nance (g,p) = (0.0,1.2) with density

Q(g,p) = W#%e"p (Q)T;f‘)i) P (%) '
(4.1)

This is a bivariate Gaussian centered on (g, p) with angle
and momentum variances o4 and op, respectively. To in-
vestigate the quantum dynamics we use the Q function
as the appropriate analog of the classical phase-space dis-
tribution. A quantum state |1) will define a probability
density on classical phase space by
- ! 2 4.2
Q(e,p) = 5z e, pl¥)|". (4.2)
The states |q, p) are coherent states for a simple harmonic
oscillator with frequency /k.

A. Classical

In Fig. 2 we have plotted the momentum mean (p) and
variance V(p) as a function of the strobe number n for a
cloud of 1000 points evolving under the classical dynam-
ics Eq. (2.2). The points have an initial density given
by Eq. (4.1) with means (g, p) = (0.0,1.0) with variances
04 = 0.084 and o, = 0.036. For these simulations we
have taken x = 1.2 and 2 = 1.

When € = 0.0 we see that the mean momentum quickly
drops to zero and the momentum variance rises as the

(@)
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FIG. 2. Plot of classical momentum statistics vs n. (a)
€ = 0.0, (b) e = 0.1, (c) e = 0.2, (d) e = 0.3. Solid line, (p);
dashed line, V (p).
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classical distribution is smeared out over the trajectories (a)
of constant energy. This delocalization is due to the non-
linear dependence of the free Hamiltonian on the action.
As the perturbation parameter € is increased from 0.0 - |
to 0.2 the growth in momentum variance is suppressed
and the mean momentum remains near its initial value,
indicating that the classical distribution is being local-
ized about the stable fixed point. We interpret this as
follows. The width of the stable region is increasing lin-
early with e until the classical distribution is contained |
within the region of the elliptic fixed point. As noted in

<p> V(p)

n 1 n 1 L 1 i 1 1
Sec. III A when ¢ is increased to 0.3 the stable region of 200 400 600 800 1

phase space begins to shrink because of the destruction
of KAM tori. As a result we see in Fig. 2(d) that the Strobe number n

00

classical distribution becomes delocalized again.

(b)

B. Quantum il ' I C ]

<p>
1
{

In our simulations of the quantum dynamics of
Eq. (2.1) we have taken % = 0.05. The Floquet operator
U(T) was found by numerically integrating the operator
differential equation (2.6) in the momentum representa-
tion. Since P and T are symmetries of the quantum -
evolution and the quasistationary states are real in the o
momentum basis the problem of finding eigenstates of 200 200 600 800 1
U(T) reduces to the diagonalization of a real symmet-
ric matrix. The stationary states |w,,) and the energies Strobe number n
Fw,, were found by diagonalizing the Hamiltonian (2.2)
in the momentum representation and are labeled in order (c)
of increasing energy.

We have graphed the quantum mean (p) and variance F— 1t - T T T T T T 7
V(p) of momentum as a function of the strobe number d
n in Fig. 3. The initial state |¢)) was chosen to be a
minimum uncertainty state with (§) = 0.0, (p) = 1.0,
and (Ap?) = 0.01 so that its Q function was equal to
the classical probability distribution (4.1). Once the Flo-
quet operator had been diagonalized we used Eq. (2.9)
to calculate the quantum stroboscopic evolution. When -k
€ = 0.0 we see that initially the mean momentum quickly ‘ . . .
drops to zero and the momentum variance rises as the 200 400 600 800 1000
quantum wave packet becomes delocalized. This is due
to the nonlinear dependence of w,, on the quantum num-
ber m. The decrease in momentum variance when n is
a multiple of 150 indicates a revival of the initial wave (d)
packet and can be explained by a quadratic dependence
of w,, on m [8].

/ \
o v~ \~\"’~«14v" U AT,
_\,\ﬁfq,"\"/\. rv 4
- -

V(p)
0

T

Ol 1.
(@}
o

<p>

V(p)
0

Strobe number n

Like the classical dynamics of a distribution of points A
we find that as € increases from 0.0 to 0.2 the growth in v
the quantum momentum variance is suppressed and the .
mean becomes fixed about its initial value, indicating \;5

that the state is being localized. In Fig. 4 we have repre-
sented the probability distribution of the state |1) in the ]
€ = 0.0 and € = 0.2 bases of quasistationary states. The -
length of each phasor X,, equals the overlap probability T T
|(wm[1/;)|2 and its angle equals the eigenphase —w,,T. 200 400 600 800 1000
Comparing the two distributions we see that as the per-
turbation parameter is increased the support on the qua-
sistationary states has decreased to two states with al- FIG. 3. Plot of quantum momentum statistics vs n. (a)
most identical quasifrequencies. We have verified that € = 0.0, (b) e = 0.1, (c) € = 0.2, (d) € = 0.3. Solid line, (p);
these states have opposite parity and for the purpose of dashed line, V (p).

Strobe number n
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FIG. 4. Quasistationary state distribution of minimum un-
certainty state. (a) e = 0.0, (b) e = 0.2.

this discussion |wy) and |w_) will denote the even and
odd states respectively.

In Fig. 5 we have expanded |w_) in terms of the un-
perturbed stationary states |w,,). We find that it is a
superposition of a dominant state |w;2) and two other
states |wio) and |wi4) satisfying the near-resonant condi-
tions

h(wlz — wlo) =0.103 = 2hQ, (43)
h(wlz — w14) = —0.101 = —2AQ. (4.4)
©
o[ T T T T T

o<

/\IC'._ T

= L

£

ol i

— O
o;..Ll__._.m.l....Hﬂ..
0 5 10 15 20

m

FIG. 5. Expansion of perturbed eigenstate |w_) for € = 0.2.

FIG. 6. Q function of stationary state |wi2).

As noted in Sec. IIIB these energy levels give rise to
small denominators in second-order quantum perturba-
tion theory. To see the effect of the second-order quan-
tum resonance on the phase-space distribution of a qua-
sistationary state we have plotted the @ functions for the
dominant state |wi2) and |w_) in Figs. 6 and 7, respec-
tively. As expected we find that the @ function of |wy2) is
concentrated about an ellipse corresponding to an orbit
of the free pendulum. But we find that the phase-space
density of |w_) is very different. Evidently the interfer-
ence between near-resonant states has caused the @ func-
tion in Fig. 7 to become concentrated about the stable
regions of the classical second-order resonance. Now we
see the role of the quantum resonance in the dynamic
localization of quantum wave packets. It has caused
the resonant quasistationary states to become strongly
peaked about the stable fixed points such that the initial
minimum uncertainty state is approximated by a sum of
two states with opposite parity. Since these two states
have almost identical quasifrequencies the minimum un-
certainty is approximately stationary.

When € is increased to 0.3 we would expect the quan-
tum motion to reflect the delocalization of the classical
distribution shown in Fig. 2(d). Since the minimum un-
certainty state is the sum of two quasistationary states
with opposite parity we would expect to find coherent
tunneling between the region (g,p) = (0.0,1.2) and its
reflected partner (g,p) = (0.0,—1.2). This is precisely
what we see in Fig. 3(d) and is due to the detuning of
the two dominant quasifrequencies.

T T T T
~N - 4
1
a o -
I 1
o~

S i,

1 . ! . L

-2 0 2

g

FIG. 7. Q function of quasistationary state |w_) for e = 0.2.
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V. DISCUSSION

We have studied the quantum dynamics of a state
initially concentrated near a classical second-order reso-
nance of a driven pendulum. In the absence of driving the
state undergoes a sequence of delocalizations followed by
revivals. This is due to the nonlinearity of the free pendu-
lum. As the driving strength increases the state becomes
localized, a result reflecting the change in topography of
the underlying quasistationary states. The concentration
of the quasistationary state’s Q function can be explained
by the interference of near-resonant stationary states, a
result predicted by second-order quantum perturbation
theory. After the minimum uncertainty state collapses
to a sum of two quasistationary states we see coherent
tunneling between the stable regions of the classical res-
onance.

In this paper we have stressed that the localization we
observe occurs because of a second-order resonance in
quantum perturbation theory and is analogous to the lo-
calization of a classical distribution at a classical second-
order resonance. But we would expect from the results
of Sec. III that localization and tunneling will occur at
first-order resonances as well. Indeed, since the small
denominators occur at lower order in € the localization
should develop faster than for second-order resonances.

We have not studied the effect on dynamic localiza-
tion of varying the driving frequency 2, but quantum
perturbation theory predicts we should observe the fol-
lowing behavior. Firstly, as €2 is increased from zero
we would expect that resonance stuctures should de-
velop first amongst separatrix eigenstates because their
quasifrequencies are more closely spaced than for low-
lying states. Secondly, if the driving is changed so that
the difference in quantum number n of the resonating
states is increased, we would expect that the perturbed
quasistationary states would generate more complicated
Q functions so that a minimum uncertainty state located
on a resonance might no longer be well approximated by
two states with opposite parity.

In this paper we have studied the effects of quantum
resonances on quasistationary states. But quantum per-
turbation theory can also be used to study the change in
quasifrequencies. In particular, Eqgs. (3.23a) and (3.23b)
suggest that the tunneling rate for driven bistable sys-
tems should be linear or quadratic depending on the na-
ture of the perturbation. This would merit further study.

APPENDIX

Here we give details of the first- and second-order res-
onances, of the classical system. Starting with the action
for the nonlinear pendulum

I(Ho) = %[s(g;zv) —(1- N%}'(%;N)], (A1)

where N? = (Hy + ) /2k, F is the elliptic integral of the
first kind, £ is the elliptic integral of the second kind,
and the classical frequency of oscillation is then

JR
TN (A2)

First-order resonances occur for [see (3.4)]

}'(%;N) _ Mm m=0,+1,42, ...

s
wei(Ho) = SFEN)

(A3)

In particular, if 2 = 1, k = 1.2, and m = 1, then
Hy = 1.15 and the stroboscopic map has a fixed point
at (¢,p) = (0,2.2).

Usmg the fact that the angle for the nonlinear pendu-
lum is

m F(§N)

9(H07 ) 2 .'F( )

(A4)

where Nsin{ = sing/2 , we can write the perturbation
H; = 2k cos Qt cos q as a function of # and Hy and expand
as a Fourier series in 6. See Eq. (3.3). The first few
amplitudes are

PO R G T S|
R e ST
) e
Hha = 4;;2 ((1 = Q% — Q)
—(1—_??(—1-_75) - ) (A7)
where Q = exp (—7K'/K), K = F(%;N), and K' =

F(3;:V1—N?).

We now attempt a canonical transformation to action-
angle variables (I, 0) for H(I,0,t) up to and including the
order-€¢ terms. This we do through a generating function,
0I + W(9,1,t), where

W(6,I,t) =eWw™(9,1,t) + WP (9,1,t) + (A8)

such that the new action-angle variables are given by

=0 A9
+ 57 (A9)
114
I=1I+ —a—o—, (AlO)
and the new Hamiltonian is
ow
— All
H=H+ T (A11)

Choosing W) such that H is a function of I only (up
to order €) gives

Z-Ell 2m

w = — —L2m
2mwa(I) —

m=0,%+1,%+2,...

[exp i(Q2t 4 2mo)

+c.c.]. (A12)
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However, W(1) becomes singular if the first-order reso-
nance condition (3.4) holds, clearly indicating that T is
not an approximate invariant there.

To investigate a first-order resonance, say that furthest
from the separatrix at m = 1, consider I close to the res-
onance condition. Then remove all the other first-order
resonances through the canonical transformation given
above without the m = 1 term. The new Hamiltonian is
then

H(I,0,t) = Ho(I) + 2eH12 cos (Qt + 20) + O(€?), (A13)

valid in the neighborhood of the resonance. Transform-
ing to a rotating frame we find the equations are approx-
imately those of the nonlinear pendulum. The width of
the resonance is defined as the width of the separatrix of

this pendulum,
2EH1,2
dwe /dI

For @ =1,k =1.2,and € = 0.1 the width =~ 0.43 and the
resonances have overlapped with the separatrix itself.
Second-order resonances arise because through the

(A14)

canonical transformation given above the new Hamilto-
nian H [Eq. (3.5)] has a term second order in €; €2H,,
where

H, =

1 (dWM(T,8,8)\* 82Ho(T)
2 86 a1?

ow )
+ Z —3—0—H1,2m[expi(ﬂt + 2m#0) + c.c.].

m

(A15)

The Fourier analysis of Hy, see Eq. (3.6), shows that
resonances occur for I given by mwq(I) + Q =0, m =
0,+1,%2,..., and, in particular, for I given by wq(I) +
@ =0. For 2 =1, k = 1.2 this means the stroboscopic
map has stable fixed points at (¢,p) =~ (0.0,+1.2). We
can analyze this resonance exactly as we did for the first-
order resonance. The width is given by

€ 2H272
dwa(I)/dl’

which for @ =1, Kk = 1.2, and € = 0.1 is ~ 0.44.

(A16)
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